Disease Protein Prediction with Graph Convolutional Networks

نویسنده

  • E. Sabri Eyuboglu
چکیده

Human phenotypes – i.e. our characteristics, conditions and diseases – are not merely a product of our genetic constitution, but rather arise out of an intricate system of interactions between the proteins and other molecules in our cells. 1 This fact has inspired a huge effort to document and understand the network of those protein-protein interactions which we’ll refer to collectively as the protein-protein interaction network or the human interactome. The proteinprotein interaction network can be intuitively represented as an undirected graph: the nodes are proteins and each edge represents a binary physical interaction between proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Hubs in Effective Normal and Tumor Protein Interaction Networks

ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...

متن کامل

Protein contact prediction from amino acid co-evolution using convolutional networks for graph-valued images

Proteins are responsible for most of the functions in life, and thus are the central focus of many areas of biomedicine. Protein structure is strongly related to protein function, but is difficult to elucidate experimentally, therefore computational structure prediction is a crucial task on the way to solve many biological questions. A contact map is a compact representation of the three-dimens...

متن کامل

Automatic Brain Tumor Segmentation by Deep Convolutional Networks and Graph Cuts

Brain tumor segmentation in magnetic resonance imaging (MRI) is helpful for diagnostics, growth rate prediction, tumor volume measurements and treatment planning of brain tumor. The difficulties for brain tumor segmentation are mainly due to high variation of brain tumors in size, shape, regularity, location, and their heterogeneous appearance (e.g., contrast, intensity and texture variation fo...

متن کامل

Search-Convolutional Neural Networks

We present a new deterministic relational model derived from convolutional neural networks. Search-Convolutional Neural Networks (SCNNs) extend the notion of convolution to graph search to construct a rich latent representation that extracts local behavior from general graph-structured data. Unlike other neural network models that take graph-structured data as input, SCNNs have a parameterizati...

متن کامل

Diffusion-Convolutional Neural Networks

We present diffusion-convolutional neural networks (DCNNs), a new model for graph-structured data. Through the introduction of a diffusion-convolution operation, we show how diffusion-based representations can be learned from graphstructured data and used as an effective basis for node classification. DCNNs have several attractive qualities, including a latent representation for graphical data ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017